Hilton Head 2006

A Solid-State Sensors, Actuators, and Microsystems Workshop

FINAL PROGRAM

June 4 - 8, 2006 Hilton Head Island, South Carolina

Sponsored by

Educational Grants provided by

Defense Advanced Research Projects Agency - MTO/MEMS
The Transducer Research Foundation, Inc.

GENERAL INFORMATION

Information/Message Board

The Information/Message Board will be located near the Registration Desk. Messages will be posted in this area throughout the Workshop.

Meeting Room Logistics

Please contact the Workshop Registration Desk if you find the temperature in the room uncomfortable or you are unable to hear or see because of equipment difficulties.

Evaluation

There is a Workshop evaluation form in your packet. Your feedback is very important to the improvement and development of this Workshop. Please return the completed form to the Workshop Registration Desk.

Technical Digest and CD-ROM

An extended abstract of each paper presented at the Workshop has been published in a Technical Digest and on a CD-ROM. One copy of the Digest and the CD-ROM is included with your material. Additional copies may be purchased at the Workshop Registration Desk. Purchase price of the Technical Digest will increase after the Workshop. Be sure to order your additional copies in advance.

You will also find a printed collection of the MEMS Educational Posters with your material and on the CD. The printing of this booklet was supported by the National Science Foundation and National Aeronautics and Space Administration Goddard Space Flight Center

Additional Technical Digests

Additional Technical Digests may be purchased at the Workshop Registration Desk for \$105.00 (\$140.00 plus shipping and handling after the Workshop). To take advantage of the Workshop price and to avoid shipping and handling fees, please purchase additional copies during the Workshop.

Smoking

All meeting rooms and seated functions are smoke free. Please regard the smoking policy of the Crowne Plaza Resort and use designated smoking areas only.

Job Market Board

Please visit the Job Market Board located in the lobby near the Workshop Registration Desk to see current job opportunities or to place your resume on the board.

Cellular Phones, Beepers, Watch Alarms, Cameras and Tape Recorders

Out of courtesy to our speakers and other attendees, please turn off any cellular phones, pagers and watch alarms during sessions. Cameras and tape recorders are strictly prohibited in the plenary and poster sessions.

Shipping Service

If you need to ship or mail any packages, please visit the Business Center located across from the Workshop Registration Desk. Shipping is to be at attendees' own expense. The Business Center is open 24 hours a day.

High Speed Internet Connection

All sleeping rooms at the Crowne Plaza are equipped with a wired Internet connection (\$9.95 plus tax for 24 hours). The public space of the hotel is equipped with wireless Internet (\$9.95 plus tax for 24 hours) and you will need to visit the Hotel front desk to receive a password. You may purchase a package (wired in room and wireless in the public space) for \$14.95 plus tax. Please inform the front desk of this request.

You may connect your laptop at the Business Center for no charge for the first 15 minutes of connectivity, but there will be a charge of \$8.00 plus tax for each additional 15 minutes.

MEMS EDUCATION ROUNDTABLE DISCUSSION

Please join us at the reserved tables during Monday's lunch to discuss a detailed acceptance criteria that might be used for selecting MEMS education abstracts at future Hilton Head meetings. The goal of this discussion would be to define a process for drafting a set of recommendation to the next Hilton Head Program Chair for how MEMS Education papers may be fully integrated into the meeting. Please sign up at the Workshop registration table if you would like to participate in this luncheon roundtable discussion.

WORKSHOP SOCIAL EVENTS

Welcome Reception

The Welcome Reception will be held in the pavilion, Sunday evening, June 4^{th} , 6:00 p.m. – 9:00 p.m.

Golf Tournament

The Tuesday afternoon Golf Tournament will be on June 6th at Golden Bear at Indigo Run Golf Course. Tee times start at 1:00 p.m. If you are interested in joining the Golf Tournament, please see Katharine at the Workshop Registration Desk.

Banquet

The banquet will be held in the Pavilion on Tuesday, June 6th, 7:00 p.m. - 9:00 p.m.

Guest Packages

Guest meal packages are available for purchase for guests of attendees. The package includes the Sunday Welcome Reception, Hospitality Room Breakfasts (Signals Lounge 8:30 a.m. – 10:00 a.m.), Lunches and the Banquet.

Adult guest packages may be purchased for \$100.00 at the Workshop Registration Desk. Child packages (7 – 12 years of age) are available for \$50.00 and children under 6 are free.

ORGANIZING COMMITTEE

General Chairman Thomas W. Kenny - Stanford University

Technical Program Chairman Leland "Chip" Spangler - Aspen Technologies

Treasurer Joseph M. Giachino - University of Michigan

Local Arrangements Mark G. Allen - Georgia Institute of Technology

Technical Program Committee Members

David Arch - Honeywell International

David Arnold - University of Florida

Bernard Boser - University of California at Berkeley

James M. Bustillo - Lawrence Berkeley National Laboratory

Stephen Casalnuovo - Sandia National Laboratory

Gary Fedder - Carnegie Mellon University

Storrs Hoen - Agilent Labs

Michael A. Huff - MEMS and Nanotechnology Exchange

Hal Jerman - Coherent, Inc.

Thomas Kenny - Stanford University

Sang-Gook Kim - Massachusetts Institute of Technology

Aaron Knobloch - General Electric/Global Research

Mehran Mehrengany - Case Western Reserve University

David Monk - Freescale

Richie Payne - Pixtronix, Inc.

Michael Putty - Delphi Research Labs

Antonio Ricco - NASA Ames Research Center

Leland "Chip" Spangler - Aspen Technologies

Svetlana Tatic-Lucic - Lehigh University

William P. Taylor - Allegro Microsystems, Inc.

Kim Turner - University of California at Santa Barbara

Xin Zhang - Boston University

TRANSDUCER RESEARCH FOUNDATION

The Transducer Research Foundation (TRF) is a nonprofit organization whose mission is to stimulate research within the United States in science and engineering, with emphasis on technologies related to transducers, microsystems, and nanosystems, and to foster the exchange of ideas and information between academic, industrial, and government researchers.

The founders of TRF were also the founders of this biennial "Workshop on Solid-State Sensors, Actuators, and Microsystems," which began in 1984 under IEEE sponsorship. TRF took over the full sponsorship of the workshop in 1994. TRF also sponsors other topical workshops in the microsystems field and supports student development through travel grants that enable students to attend major microsystems conferences and workshops, worldwide.

If your organization would like to explore any of these options for TRF sponsorship or student grants, please contact someone at the Workshop registration desk, or a TRF officer/board member, or visit the web-site www.transducer-research-foundation.org for further information.

President Stephen D. Senturia,

Vice-President Antonio J. Ricco

Treasurer Robert Sulouff

Secretary Richard Muller

Directors Mark G. Allen

Luc Bousse Roger Howe Thomas Kenny Richard Muller Antonio J. Ricco Martin Schmidt Stephen D. Senturia Robert Sulouff

Executive Director Katharine K. Cline

COMMERCIAL SUPPORT

Special acknowledgements to the Transducer Research Foundation, Inc. and the Defense Advanced Research Projects Agency (DARPA) MTO/MEMS Program for their educational grant support of this workshop.

The Transducer Research Foundation, Inc. would also like to thank the following companies for their support, encouragement, and involvement in the 2006 Solid State Sensors, Actuators and Microsystems Workshop.

Coventor **

4000 CentreGreen Way, Suite 190 Cary, NC 27529 USA

Phone: 1-919-854-7500 Fax: 1-919-854-7501 Website: www.coventor.com

MEMScAP **

4021 Stirrup Creek Drive, Suite 120 Durham, NC 27703 USA

Phone: 1-919-314-2200 Fax: 1-919-314-2201 Website: www.memsrus.com

Microbridge Technologies, Inc. **

1980 Sherbrooke Street, #505 Montreal, QC H3H 1E8 CANADA

Phone: 1-514-938-8089 Fax: 1-514-938-9089

Website: www.mbridgetech.com

Polytec Inc. **

1342 Bell Ave., Suite 3-A Tustin, CA 92780 USA Phone: 1-714-850-1835

Fax: 1-714-850-1831 Website: www.polytec.com

**

R&D Magazine

100 Enterprise Drive, Suite 600 Rockaway, NJ 07866 USA Phone: 1-973-920-7160 Fax: 1-973-920-7541

Website: www.reedbusiness.com

Robert Bosch Research and Technology Center

4009 Miranda Avenue Palo Alto, CA 94304 USA Phone: 1-650-320-2958

Fax: 1-650-320-2999

Website: www.boschresearch.com

Sensors Magazine

201 Sandpoint Ave., Suite 500 Santa Ana, CA 92707 USA Phone: 1-714-338-6700 Fax: 1-714-338-6717

Website: www.sensorsmag.com

SiTime

990 Almanov Ave Sunnyvale, CA 94085 USA Phone: 1-408-328-4404 Fax: 1-408-328-4439 Website: www.sitime.com

Texas Instruments/DLP® Products

6550 Chase Oaks Blvd., M.S. 8479

Plano, TX 75023 USA Phone: 1-214-567-2680 Fax: 1-214-567-0989 Website: www.dlp.com

Tousimis

2211 Lewis Avenue Rockville, MD 20851 Phone: 1-301-881-2450 Fax: 1-301-881-5374

Website: www.tousimis.com

Yole Développement **

45 rue Sainte Genevieve Lyon, 69006 FRANCE Phone: 33 472 83 01 90 Fax: 33 472 83 01 83 Website: www.yole.fr

**Tabletop Exhibits – the tabletops are located in the back of the plenary room.

Monday, June 5

7:00 a.m. Breakfast 7:45 a.m. Welcome and Introduction Thomas W. Kenny, Stanford University and Leland "Chip" Spangler, Aspen Technologies Session 1 - Micromirrors and Displays Session Chair - Hal Jerman, Coherent, Inc. 8:15 a.m. **Invited Speaker** TOWARD AN iMoD™ ECOSYSTEM Mark W. Miles Qualcomm MEMS Technologies, USA MAGNETIC TWO-AXIS MICROMIRROR FOR 3D OCT ENDOSCOPY 9:00 a.m. J.J. Bernstein¹, T.W. Lee¹, F.J. Rogomentich¹, M.G. Bancu¹, K.H. Kim², G. Maguluri², B.E. Bouma², and J.F. DeBoer² ¹Draper Laboratory and ²Massachusetts General Hospital MEMS SPATIAL LIGHT MODULATOR FOR OPTICAL MASKLESS 9:25 a.m. LITHOGRAPHY V.A. Aksyuk, D. López, G.P. Watson, M.E. Simon, R.A. Cirelli, F. Pardo, F. Klemens, A.R. Papazian, C. Bolle, J.E. Bower, E. Ferry, W.M. Mansfield, J. Miner, T.W. Sorsch, and D. Tennant Lucent Technologies AN OPTICAL MICROSYSTEM FOR DISPLAYS 9:50 a.m. B. Winkler¹, D. Elkins¹, A. Tanner¹, R. Yeh², D. Bloom², V. Ramsey³, R. Cuff³, and L. Spangler³ ¹Evans & Sutherland Corporation, ²Alces Technology, and ³Aspen Technologies 10:15 a.m. **Break** Session 2 - Motors Session Chair - David Arnold, University of Florida 10:40 a.m. DYNAMIC CHARACTERIZATION OF A LINEAR VARIABLE-CAPACITANCE MICROMOTOR N. Ghalichechian¹, A. Modafe¹, A. Frey¹, J.H. Lang², and R. Ghodssi¹ ¹University of Maryland and ²Massachusetts Institute of Technology MODELING AND CONTROL OF A 3-DEGREE OF FREEDOM 11:05 a.m. WALKING MICROROBOT Y.-M. Chen¹, J.W. Suh², G.T.A. Kovacs², R.B. Darling¹, and K.F. Böhringer¹ ¹University of Washington and ²Stanford University 11:30 a.m. **Poster/Oral Session Preview Presentations** Session Chair – Gary K. Fedder, Carnegie Mellon University 12:30 p.m. **Lunch and MEMS Education Roundtable Discussion**

2:00 p.m. -

5:00 p.m. Contributed Posters and Late News Posters

Session Chair - Svetlana Tatic-Lucic, Lehigh University

See page 13 for listing of Contributed Posters and page 20 for Late News Posters.

Tuesday, June 6

7:30 a.m. **Breakfast**

Session 3 - Mechanical Structures

Session Chair - David Arch, Honeywell International

8:15 a.m. Invited Speaker

SiSonic [™] – THE FIRST COMMERCIALIZED MEMS MICROPHONE

Peter V. Loeppert and S.B. Lee *Knowles Electronics, LLC*

9:00 a.m. A MICROMACHINED PIEZOELECTRIC MICROPHONE FOR

AEROACOUSTICS APPLICATIONS

S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak

University of Florida

9:25 a.m. FLEXIBLE WIRELESS PASSIVE PRESSURE SENSORS FOR

BIOMEDICAL APPLICATIONS

M.A. Fonseca¹, M.G. Allen¹, J. Kroh², and J. White²
¹Georgia Institute of Technology and ²CardioMEMS, Inc.

9:50 a.m. A HIERARCHICAL GECKO-INSPIRED SWITCHABLE ADHESIVE

M.T. Northen¹, K.L. Turner¹, C. Greiner², and E. Arzt²

¹University of California at Santa Barbara and

²Max Planck Institute for Metals Research, GERMANY

10:15 a.m. **Break**

Session 4 - Processes

Session Chair - Aaron Knobloch, General Electric/Global Research

10:40 a.m. SOI MEMS PROCESS INSENSITIVE TO SACRIFICIAL OXIDE ETCH

INDUCED SUBSTRATE ANCHOR PERIMETER VARIATION

G.J. O'Brien¹, D.J. Monk² and K. Najafi³

¹Arizona State University, ²Freescale Semiconductor and

³University of Michigan

11:05 a.m. A PLANAR GLASS/SI MICROMACHINING PROCESS FOR THE

HEAT EXCHANGER IN A J-T CRYOSURGICAL PROBE

W. Zhu¹, D.W. Hoch², G.F. Nellis², S.A. Klein², and Y.B. Gianchandani¹

¹University of Michigan and ²University of Wisconsin

11:30 a.m. LIGHT-ACTUATED AC ELECTROOSMOSIS FOR OPTICAL

MANIPULATION OF NANOSCALE PARTICLES

P.-Y. Chiou, A.T. Ohta, A. Jamshidi, H.-Y. Hsu, J.B. Chou, and M.C. Wu

University of California at Berkeley

Late News Oral Papers

11:55 a.m. 800 MHZ LOW MOTIONAL RESISTANCE CONTOUR-EXTENSIONAL

ALUMINUM NITRIDE MICROMECHANICAL RESONATORS

P.J. Stephanou and A.P. Pisano *University of California at Berkeley*

12:10 p.m. COMPOSITE FLEXURAL MODE RESONATOR WITH REDUCED

TEMPERATURE COEFFICIENT OF FREQUENCY

R. Melamud, B. Kim, M.A. Hopcroft, S. Chandorkar, M. Agarwal, C. Jha,

S. Bhat, K.K. Park, and T.W. Kenny

Stanford University

12:25 p.m. -

1:30 p.m. **Lunch**

7:00 p.m. -

9:00 p.m. **Banquet**

Wednesday, June 7

7:30 a.m. **Breakfast**

Session 5 - Actuators

Session Chair - Michael Putty, Delphi Research Labs

8:15 a.m. Invited Speaker

SUB-NANOMETER POSITION CONTROL USING A SECOND STAGE

ACTUATOR IN HARD DISC DRIVES

Dallas W. Meyer, N.F. Gunderson, K.J. Schulz, T.A. Bordson, R.A. Budde,

M.A. Huha, M. Jiang, D.A. Sluzewski, J.S. Wright, and L.J. Berg

Seagate Technology

9:00 a.m. AUTOMATED OPTICAL FIBER ALIGNMENT IN 2-AXES USING 3D

SHAPED ACTUATORS B. Morgan and R. Ghodssi University of Maryland

9:25 a.m. HALF-MILLIMETER-RANGE VERTICALLY SCANNING

MICROLENSES FOR MICROSCOPIC FOCUSING APPLICATIONS

A. Jain and H. Xie *University of Florida*

9:50 a.m. BILLION-CYCLE ULV ELECTROSTATIC RF MEMS SWITCH

T.-K.A. Chou, H. Bar, J. Heck, Q. Ma, J.B. Melki, Q. Tran, S. Tubul,

B. Weinfeld, and N. Ziharev

Intel Corporation

10:15 a.m. Break

Session 6 - Resonators

Session Chair - William P. Taylor, Alegro Microsystems, Inc.

10:40 a.m. COUPLED TORSIONAL CANTILEVERS FOR LABEL-FREE SINGLE MOLECULAR LEVEL BIO-DETECTION AND NANOMATERIALS

CHARACTERIZATION

O. Sahin¹, H.H.J. Persson², C.F. Quate², and O. Solgaard²

¹Harvard University and ²Stanford University

11:05 a.m. DISSIPATION IN SINGLE-CRYSTAL 3C-SIC ULTRA-HIGH

FREQUENCY NANOMECHANICAL RESONATORS X.L. Feng¹, C.A. Zorman², M. Mehregany², and M.L. Roukes¹ *California Institute of Technology and ²Case Western Reserve University*

AMPLITUDE NOISE INDUCED PHASE NOISE IN ELECTROSTATIC 11:30 a.m.

MEMS RESONATORS

M. Agarwal, K.K. Park, B. Kim, M.A. Hopcroft, S.A. Chandorkar, R.N. Candler, C.M. Jha, R. Melamud, T.W. Kenny, and B. Murmann

Stanford University

11:55 a.m. Lunch

Late News Oral Papers

Session Chair - Kimberly L. Turner, University of California at Santa

Barbara

FAST, MEMS-BASED, PHASE-SHIFTING INTERFEROMETER 1:15 p.m.

H. Choo¹, R. Kant², D. Garmire¹, J. Demmel¹, and R.S. Muller¹ ¹University of California at Berkeley and ²Stanford University

ADVANCED MEMS SPATIAL LIGHT MODULATOR FOR 1:30 p.m.

COMMUNICATIONS, IMAGING, AND TARGETING

F. Pardo, M.E. Simon, V.A. Aksyuk, W.Y.-C. Lai, C.S. Pai, F.P. Klemens, J.F. Miner, R.A. Cirelli, E.J. Ferry, J.E. Bower, W.M. Mansfield, A. Kornblit, T.W. Sorsch, J.A. Taylor, M.R. Baker, R. Fullowan,

H. Dyson, A. Gasparyan, and S. Arney

Lucent Technologies

1:45 p.m. PROXIMITY MODE INCLINED UV LITHOGRAPHY

Y.-K. Yoon and M.G. Allen Georgia Institute of Technology

SILICON-ON-SILICON (SOS): A NEW CMOS COMPATIBLE LOW 2:00 p.m.

TEMPERATURE MEMS PROCESS USING PLASMA ACTIVATED

FUSION BONDING

T. Galchev, W.C. Welch, III, and K. Najafi

University of Michigan

A MICROFABRICATED IMPEDANCE SENSOR FOR IONIC 2:15 p.m.

TRANSPORT IN NANOPORES

S. Prakash, J. Yeom, and M.A. Shannon University of Illinois at Urbana-Champaign 2:30 p.m. PASSIVE MICROFLOW REGULATION USING THERMALLY

RESPONSIVE POLYMERS

B. Stoeber¹, D. Liepmann², and S.J. Muller²

¹University of British Columbia, CANADA and

²University of California at Berkeley

2:45 p.m. CONTROLLED DROPLET COALESCENCE IN AIR AND ITS

APPLICATION TO MICROMIXING C.-Y. Lee, H. Yu, and E.S. Kim *University of Southern California*

6:00 p.m. – 8:00 p.m.

MEMS Educational Posters and Open Posters

Session Chair – James M. Bustillo, Lawrence Berkeley National Laboratory

See page 21 for listing of MEMS Educational Posters and page 22 for Open Posters.

8:00 p.m. -

10:00 p.m. Rump Session

Session Chair - Jack Judy, University of California at Los Angeles

Thursday, June 8

7:30 a.m. Breakfast

Session 7 - Micro Devices

Session Chair - Stephen Casalnuovo, Sandia National Laboratory

8:15 a.m. Invited Speaker

CHIP-SCALE ATOMIC DEVICES

John Kitching¹, S. Knappe¹, P.D.D. Schwindt¹, Y.-J. Wang¹, H. Robinson¹, L. Hollberg¹, L.-A. Liew¹, J. Moreland¹, A. Brannon², J. Breitbarth², B. Lindseth², Z. Popovic², V. Shah², V. Gerginov³, and M. Eardley⁴

¹National Institute of Standards and Technology, ²University of Colorado,

³University of Notre Dame, and ⁴State University of New York

9:00 a.m. A MEMS SINGLET OXYGEN GENERATOR

T.F. Hill¹, L.F. Velásquez-García¹, B.A. Wilhite², K.F. Jensen¹,

A.H. Epstein¹, and C. Livermore¹

¹Massachusetts Institute of Technology and ²University of Connecticut

9:25 a.m. A MICRO DIRECT METHANOL FUEL CELL WITH SELF-

PUMPINGOF LIQUID FUEL D.D. Meng and C.-J. Kim

University of California at Los Angeles

9:50 a.m. AN IMPROVED SILICON DIRECT FORMIC ACID FUEL CELL FOR

PORTABLE POWER GENERATION K.-L. Chu, R.I. Masel, and M.A. Shannon University of Illinois at Urbana-Champaign

10:15 a.m. **Break**

Session 8 - Chemical Devices

Session Chair - Storrs Hoen, Agilent Labs

10:40 a.m. CHANNEL-TO-DROPLET EXTRACTIONS FOR ON-CHIP SAMPLE

PREPARATION

U.-C. Yi, W. Liu, P.-P. de Guzman, and C.-J. Kim

Core Microsolutions, Inc.

11:05 a.m. ENGINEERING SURFACE MICRO-STRUCTURE TO CONTROL

FOULING AND HYSTERESIS IN DROPLET BASED MICROFLUIDIC

BIOANALYTICAL SYSTEMS

A. Shastry, S. Goyal, A. Epilepsia, M.J. Case, S. Abbasi, B. Ratner,

and K.F. Böhringer *University of Washington*

11:30 a.m. A NOVEL BENZOCYCLOBUTENE-BASED DEVICE FOR STUDYING

THE PHYSICS OF THE EBULLITION PROCESS S. Moghaddam, K.T. Kiger, A. Modafe, and R. Ghodssi

University of Maryland

11:55 a.m. STREAMLINE BASED DESIGN OF A MEMS DEVICE FOR

CONTINUOUS BLOOD CELL SEPARATION

S. Zheng and Y.-C. Tai

California Institute of Technology

12:20 p.m. Closing Remarks

Thomas W. Kenny and Leland "Chip" Spangler

12:25 p.m. -

2:00 p.m. **Lunch**

Contributed Posters

CHEMICAL

P1 A LOW-POWER PRESSURE- AND TEMPERATURE-PROGRAMMABLE μ GC COLUMN

J.A. Potkay, G.R. Lambertus, R.D. Sacks, and K.D. Wise *University of Michigan*

P2 A NANO INTERDIGITATED ELECTRODES ARRAY ON POLYMER FOR DISPOSABLE IMPEDIMETRIC BIOSENSORS

Z. Zou, J. Kai, M.J. Rust, and C.H. Ahn

University of Cincinnati

P3 A MICROMACHINED INKING CHIP FOR SCANNING PROBE NANOLITHOGRAPHY USING LOCAL THERMAL VAPOR INKING

METHOD

S. Li, K.A. Shaikh, S. Szegedi, E. Goluch, and C. Liu

University of Illinois at Urbana-Champaign

- P4 A PNEUMATICALLY-ACTUATED MICROVALVE FOR SPATIALLY-SELECTIVE CHEMICAL DELIVERY
 K. Baek, Y. Li, M. Gulari, and K.D. Wise
 University of Michigan
- P5 CHARACTERIZATION AND DESIGN OF DIGITIZING PROCESSES FOR UNIFORM AND CONTROLLABLE DROPLET VOLUME IN EWOD DIGITAL MICROFLUIDICS
 J. Gong and C.J. Kim
 University of California at Los Angeles
- P6 DEVELOPMENT OF A WATER MONITORING SYSTEM BASED ON INTEGRATED POLYMER MICROFLUIDICS
 L. Zhu¹, D. Meier², Z. Boger^{2,3}, C. Montgomery², S. Semancik², and D.L. DeVoe¹
 ¹University of Maryland, ²National Institute of Standards and Technology, and ³OPTIMAL Industrial Neural Systems Ltd., ISRAEL
- P7 EXPERIMENTAL CHARACTERIZATION OF FREQUENCY DEPENDENT ELECTROSTATIC ACTUATOR FOR AQUEOUS MEDIA V. Mukundan and B.L. Pruitt Stanford University
- P8 LAB-ON-A-CARD ASSAY FOR ENTERIC PATHOGENS
 B.H. Weigl¹, J. Gerdes², P. Tarr⁴, P. Yager³, L. Dillman¹, J. Gerlach¹, M. Steele¹,
 R. Peck¹, S. Ramachandran³, M. Lemba³, D. Hoekstra², M. Kokoris², M. Nabavi²,
 F. Battrell², D.M. Denno³, and E.J. Klein³

 Program for Appropriate Technology in Health, ²Micronics, Inc.,
 ³University of Washington at Seattle, and ⁴Washington University at St. Louis
- P9 IMPEDANCE BASED BIOSENSOR WITH DIELECTROPHORESIS CONCENTRATION FOR CARDIAC MYOCYTE HYPERTROPHY SENSING M. Yang¹, C.C. Lim¹, R. Liao², and X. Zhang¹

 IBoston University and **Pharvard Medical School
- P10 IN-DROPLET PARTICLE SEPARATION BY TRAVELLING WAVE DIELECTROPHORESIS (twDEP) AND EWOD Y. Zhao¹, U.-C. Yi², and S.K. Cho¹

 Iniversity of Pittsburgh and **Coremicrosolutions Inc.
- P11 METAL-CORED CARBON MICROPOSTS FOR THREE-DIMENSIONAL LI⁺ MICROBATTERY
 F. Chamran, U.-C. Yi, and C.-J. Kim
 University of California at Los Angeles
- P12 MICRO-MRI VELOCIMETRY IN MICROCHANNEL NETWORKS L.G. Raguin, D.C. Karampinos, S. Honecker, and J.G. Georgiadis *University of Illinois at Urbana-Champaign*

P13 MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

A.S. Kane^{1,2}, D. Hertzog¹, P. Baumgartel³, J. Lengefeld³, D. Horsley², B. Schuler⁴, and O. Bakajin¹

¹Lawrence Livermore National Laboratory, ²University of California at Davis, ³University of Potsdam, GERMANY, and ⁴University of Zurich, SWITZERLAND

P14 MULTILAYERED POLYMER MICROFLUIDIC CHIP WITH NANOFLUIDIC INTERCONNECTS FOR MOLECULAR MANIPULATION B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedler, and M.A. Shannon University of Illinois at Urbana-Champaign

P15 NANO SELF-ASSEMBLED ION-SENSITIVE FIELD-EFFECT TRANSISTORS FOR ACETYLCHOLINE BIOSENSING Y. Liu, A.G. Erdman, and T. Cui University of Minnesota

P16 SURFACE-MICROMACHINED IN-CHANNEL PARYLENE DUAL VALVES FOR UNPOWERED MICROFLOW REGULATION P.-J. Chen¹, D.C. Rodger^{1,2}, E. Meng², M.S. Humayun², and Y.-C. Tai¹ California Institute of Technology and ²University of Southern California

P17 SURGICALLY IMPLANTED MICRO-PLATFORMS IN MANDUCA-SEXTA MOTHS

A. Paul, A. Bozkurt, J. Ewer, B. Blossey, and A. Lal Cornell University

P18 WIRELESS CHEMICAL SENSORS FOR HIGH TEMPERATURE ENVIRONMENTS E. Birdsell and M.G. Allen

Georgia Institute of Technology

PHYSICAL

P19 ARRAYS OF COUPLED NANOMECHANICAL RESONATORS M.K. Zalalutdinov¹, J.W. Baldwin², M.H. Marcus², B.H. Houston², R.B. Reichenbach³, and J.M. Parpia³

¹SFA, Inc., ²Naval Research Laboratory, and ³Cornell University

P20 A 2-AXIS QUASI-PASSIVE PLATFORM FOR NANOSCALE PHOTONIC ASSEMBLY

B. Li, M. Pietrusky, and A. Sharon *Fraunhofer USA*

Louisiana Technical University

P21 A MONOLITHIC CMOS-MEMS 3-AXIS ACCELEROMETER WITH A LOW-NOISE, LOW-POWER DUAL-CHOPPER AMPLIFIER H. Qu, D. Fang, and H. Xie University of Florida

P22 A COMBUSTIBLE/ELECTRONEGATIVE GAS DETECTOR UTILIZING URANIUM DOPED CAST CERAMIC MICROCHANNELS J.D. Olivier and C.G. Wilson

P23 A DIGITAL MEMS OPTICAL SWITCH R.C. Gutierrez¹, T.K. Tang¹, R. Calvet¹, D. Harrington¹, S. Vargo¹, and I. Chakraborty² **ISimpel Corporation and **Bain & Company, Inc.**

P24 A MAGNETICALLY ENHANCED WIRELESS MICRO-GEIGER COUNTER C.K. Eun¹, R. Gharpurey², and Y.B. Gianchandani¹

Inviversity of Michigan and ²University of Texas at Austin

P25 A MICROASSEMBLED LARGE-DEFLECTION TIP/TILT MICROMIRROR FROM A SINGLE-MASK DRIE PROCESS M.E. Last, V. Subramaniam, and K.S.J. Pister University of California at Berkeley

P26 A NANOMECHANICAL PROTEIN CONCENTRATION DETECTOR USING A NANO-GAP SQUEEZING ACTUATOR WITH COMPENSATED DISPLACEMENT MONITORING ELECTRODES

W.C. Lee^{1,2}, Y.-H. Cho¹, and A.P. Pisano²

Ikorea Advanced Institute of Science and Technology, KOREA and **2University of California at Berkeley

P27 A PIEZOELECTRICALLY ACTUATED CERAMIC-SI-GLASS MICROVALVE FOR DISTRIBUTED COOLING SYSTEMS
J.M. Park¹, R.P. Taylor², A.T. Evans¹, T.R. Brosten², G.F. Nellis², S.A. Klein²,
J.R. Feller³, L. Salerno³, and Y.B. Gianchandani¹

Iniversity of Michigan, **2University of Wisconsin, and **3NASA Ames Research Center

P28 A RESONANT SISO SENSOR BASED ON A COUPLED ARRAY OF MICROELECTROMECHANICAL OSCILLATORS
B.E. DeMartini¹, J.F. Rhoads², S.W. Shaw², and K.L. Turner¹

Inviversity of California at Santa Barbara and **Michigan State University

P29 A VARIABLE FOCUS MICROLENS USING EWOD ON A TAPERED SU-8 STRUCTURE
Y.-J. Chang, V.M. Bright, E. Schonbrun, and K. Mohseni
University of Colorado at Boulder

P30 ABSORPTION FILTERS FOR WAVELENGTH TUNING AND FINESSE SWITCHING OF LONG WAVE INFRARED THERMAL DETECTORS Y. Wang, B.J. Potter, M. Sutton, and J.J. Talghader University of Minnesota

P31 ADHESION AND FRICTION MEASUREMENT METHOD FOR A MEMS PROBE ARRAY
W.S. Smith, P.G. Hartwell, and R.G. Walmsley
Hewlett-Packard Laboratories

P32 DESENSITIZING METHOD FOR MEASUREMENT OF THIRD-ORDER INTERMODULATION DISTORTION IN CMOS-MEMS MICROMECHANICAL RESONATORS C.-C. Lo and G.K. Fedder Carnegie Mellon University

P33 DESIGN & CHARACTERIZATION OF A MEMS THERMAL SWITCH J.H. Cho¹, C.D. Richards¹, J. Jiao², D.F. Bahr¹, and R.F. Richards¹ Washington State University and ²Portland State University

P34 DESIGN, FABRICATION, AND CHARACTERIZATION OF A MICROTURBOPUMP FOR A RANKINE CYCLE MICRO POWER GENERATOR

C. Lee¹, M. Liamini², and L.G. Fréchette^{1,2}
¹Columbia University and ²Université of Sherbrooke, CANADA

P35 DEVELOPMENT AND CHARACTERIZATION OF HIGH-SENSITIVITY BIOINSPIRED ARTIFICIAL HAIRCELL SENSOR

N. Chen, J. Chen, J. Engel, S. Pandya, C. Tucker, and C. Liu *University of Illinois at Urbana-Champaign*

P36 HIGH FREQUENCY LOW IMPEDANCE CAPACITIVE SILICON BAR STRUCTURES

S. Pourkamali and F. Ayazi *Georgia Institute of Technology*

P37 FLOW-STRUCTURE INSTABILITY PREVENTION IN A MEMS HIGH FLOW GAS VALVE

A.J. Knobloch¹, C.E. Seeley¹, A. Mulay², and R.J. Saia¹ General Electric Global Research Center and ² John F. Welch Technology Centre, INDIA

P38 INTEGRATED PERISTALTIC 18-STAGE ELECTROSTATIC GAS MICRO PUMP WITH ACTIVE MICROVALVES

H. Kim, A.A. Astle, K. Najafi, L.P. Bernal, and P.D. Washabaugh ${\it University~of~Michigan}$

P39 LOW POWER ELECTROSTATIC HELMHOLTZ-RESONANCE MICROJET GENERATOR FOR PROPULSION AND COOLING

H. Kim¹, A.H. Jauregui², C. Morrison¹, K. Najafi¹, L.P. Bernal¹, and P.D. Washabaugh¹

¹University of Michigan and ²New Mexico Institute of Mining and Technology

P40 MEASUREMENT OF INSECT FLIGHT FORCES USING A MEMS BASED PHYSICAL SENSOR

M. Nasir¹, M. Dickinson², and D. Liepmann¹

¹University of California at Berkeley and ²California Institute of Technology

P41 MEMS FILTER WITH VOLTAGE TUNABLE CENTER FREQUENCY AND BANDWIDTH

L.F. Cheow, H. Chandrahalim, and S.A. Bhave *Cornell University*

P42 MICROFABRICATED PROBES FOR LABORATORY PLASMAS

J.A. Stillman, F.C. Chiang, P.A. Pribyl, M. Nakamoto, W. Gekelman, and J.W. Judy

University of California at Los Angeles

P43 MICROMECHANICAL TIME DELAY MECHANISMS FOR ORDNANCE FUSING

J. Liu¹, D.L. DeVoe¹, and L. Fan²

¹University of Maryland and ²Naval Surface Warfare Center

P44 MULTI-LAYER EMBEDMENT OF CONDUCTIVE AND NON-CONDUCTIVE PDMS FOR ALL-ELASTOMER MEMS

J.M. Engel, N. Chen, K. Ryu, S. Pandya, C. Tucker, Y. Yang, and C. Liu *University of Illinois at Urbana-Champaign*

P45 PRESSURE ENHANCED AIR DAMPING IN ENCLOSED LATERALLY OSCILLATING MICROSTRUCTURES

K.Y. Yasumura¹ and H. Jerman²

¹FormFactor Inc. and ²Coherent Inc.

P46 SELF-POWERED HUMIDITY SENSOR POWERED BY NICKEL-63 RADIOISOTOPE

R. Duggirala¹, A. Lal¹, C. Pollock¹, and M. Kranz²

¹Cornell University and ²Morgan Research Corporation

P47 SINGLE-WALLED CARBON NANOTUBE MICROPATTERNS AND CANTILEVER ARRAY FABRICATED WITH ELECTROSTATIC LAYER-BY-

LAYER NANO SELF-ASSEMBLY AND LITHOGRAPHY

W. Xue and T. Cui

University of Minnesota

P48 TEMPERATURE STABLE, POST-PROCESS TUNABLE, HIGH Q HBARS AT 3~5 GHZ

H. Yu, H. Zhang, W. Pang, and E.S. Kim

University of Southern California

P49 THERMAL AND MECHANICAL CHARACTERIZATION AND CALIBRATION OF HEATED MICROCANTILEVERS

J. Lee, T. Beecham, K. Park, Z. Zhang, S. Graham, and W.P. King *Georgia Institute of Technology*

P50 WIDE DYNAMIC RANGE MICROELECTROMECHANICAL VISCOSITY SENSOR

R.L. Borwick, III, P.A. Stupar, and J.F. DeNatale

Rockwell Scientific Company

P51 WIREBONDER ASSEMBLY OF HINGELESS 90° OUT-OF-PLANE MICROSTRUCTURES

S.H. Tsang, D. Sameoto, I. Foulds, A.M. Leung, and M. Parameswaran Simon Fraser University

TECHNICAL

P52 3-D PATTERNED MICROSTRUCTURES USING INCLINED UV EXPOSURE AND METAL TRANSFER MICROMOLDING

S.-O. Choi, S. Rajaraman, Y.-K. Yoon, X. Wu, and M.G Allen

Georgia Institute of Technology

P53 BACKSIDE RESISTIVE LOCALIZED HEATING FOR LOW TEMPERATURE WAFER-LEVEL BONDING AND PACKAGING J. Mitchell and K. Najafi University of Michigan

- P54 EFFECT OF THE NONLINEAR ELECTROSTATIC ACTUATION FORCE ON THERMOELASTIC DAMPING/QUALITY FACTOR IN MEMS S.K. De and N.R. Aluru

 University of Illinois at Urbana-Champaign
- P55 EVALUATION OF O² PLASMA AND XeF² VAPOR ETCH RELEASE PROCESSES FOR RF-MEMS SWITCHES FABRICATED USING CMOS INTERCONNECT TECHNOLOGY C.V. Jahnes, N. Hoivik, J.M. Cotte, M. Lu, and J.H. Magerlein *IBM T.J. Watson Research Center*
- P56 FORCE-DISTANCE SPECTROSCOPY: A GENERIC METHOD TO DETERMINE THE YOUNG'S MODULUS OF FREESTANDING NANOSTRUCTURES
 N. Duarte, Q. Xiong, S. Tadigadapa, and P.C. Eklund
 Pennsylvania State University
- P57 HIGH SPEED ANISOTROPIC ETCHING OF GLASS AND PIEZOCERAMICS FOR MICROSYSTEM APPLICATIONS
 A. Goyal, S.S. Subasinghe, V. Hood, and S. Tadigadapa
 Pennsylvania State University
- P58 LATERAL LAMINATION APPROACH FOR MULTILAYER PIEZOELECTRIC MICROACTUATOR
 X. Wu, G. Yuan, S.-O. Choi, Y. Zhao, S.-H. Kim, Y.-K. Yoon, and M.G. Allen Georgia Institute of Technology
- P59 LONG-TERM RELIABILITY, BURN-IN AND ANALYSIS OF OUTGASSING IN AU-SI EUTECTIC WAFER-LEVEL VACUUM PACKAGES
 J. Mitchell, G.R. Lahiji, and K. Najafi
 University of Michigan
- **P60** MEMS CANTILEVER BEAM ELECTROSTATIC PULL-IN MODEL G.J. O'Brien¹, D.J. Monk², and L. Lin³

 ¹ Arizona State University, ² Freescale Semiconductor, and ³ University of California at Berkeley
- P61 MICROMACHINED PMN-PT SINGLE CRYSTAL FOR ADVANCED TRANSDUCERS
 X. Jiang¹, J.R. Yuan², A. Cheng³, G. Lavelle³, P. Rehrig¹, K. Snook¹, S. Kwon¹, W. Hackenberger¹, J. Catchmark³, J. McIntosh³, and X. Geng⁴

 ¹TRS Technologies, Inc., ²Boston Scientific Corporation,

 ³Pennsylvania State University, and ⁴Blatek, Inc.

- P62 MICROMANIPULATOR CONTROLLED FABRICATION OF MICRO- AND NANOSCALE POLYMER FIBERS AND APPLICATION AS SACRIFICIAL STRUCTURES IN THE PRODUCTION OF MICROCHANNELS S.M. Berry, T.J. Roussel, S.D. Cambron, S.A. Harfenist, R.W. Cohn, and R.S. Keynton University of Louisville
- P63 OPTIMAL PARAMETERS FOR ArF LASER MICROMACHINING OF SiC AND PZT J.-P. Desbiens and P. Masson Université de Sherbrooke, CANADA
- P64 SHOCK PROTECTION USING SOFT COATINGS AS SHOCK STOPS S.W. Yoon, S. Lee, N.C. Perkins, and K. Najafi *University of Michigan*
- P65 TESTING AND ASSEMBLY OF WIMS CUBES CONTAINING PASSIVE AND ACTIVE INTEGRATED CABLES
 A.B. Ucok, J.M. Giachino, and K. Najafi
 University of Michigan
- P66 WIRELESS SENSING OF DISCHARGE CHARACTERISTICS FOR QUALITY CONTROL IN BATCH MODE MICRO-ELECTRO-DISCHARGE MACHINING M.T. Richardson¹, R. Gharpurey², and Y.B. Gianchandani¹

 Iniversity of Michigan and **2University of Texas at Austin

Late News Posters

- P67 FLOW-CHAMBER MICROARRAY DETECTION OF MALARIAL ANTIGENS D.J. Laser, C.T. Hardham, and J. Kim Wave 80 Biosciences, Inc.
- P68 DIRECTIONAL REASSEMBLY OF MYOFIBRILS IN CULTURED CARDIAC MYOCYTES USING A THREE-DIMENSIONAL POLYMERIC SUBSTRATE Y. Zhao and X. Zhang

 Boston University
- P69 AN ELASTIC MEMS DEVICE FOR CELLULAR FORCE MEASUREMENT Y. Sun, X. Liu, W. Wang, and B.M. Lansdorp *University of Toronto, CANADA*
- P70 ENVIRONMENT-ADAPTIVE VARIABLE-FOCUS LIQUID MICROLENSES L. Dong, A.K. Agarwal, D.J. Beebe, and H. Jiang *University of Wisconsin*
- P71 TEMPERATURE REGULATED NONLINEAR MICROVALVES FOR SELF-ADAPTIVE MEMS COOLING M. McCarthy¹, N. Tiliakos^{1,3}, V. Modi¹, and L.G. Fréchette^{1,2} ¹Columbia University, ²Universitè de Sherbrooke, CANADA, and ³ATK – GASL

MEMS Educational Posters

EP1 A MEMS/MICROSYSTEM CURRICULUM WITH INTERNATIONAL DISSEMINATION

L.C. McAfee¹, K. Najafi¹, Y.B. Gianchandani¹, K.D. Wise¹, M.M. Maharbiz¹, D.M. Aslam², P.L. Bergstrom³, and C.R. Friedrich³

¹University of Michigan, ²Michigan State University, and

³Michigan Technological University

EP2 ADAPTING INTERDISCIPLINARY MEMS TEACHING AND TRAINING IN A "SMALL" FACULTY ENVIRONMENT

S. Bhansali

University of South Florida

EP3 AN INTERDISCIPLINARY LABORATORY COURSE IN MICROSYSTEM DEVELOPMENT

K.D. Wise, K.T. Beach, T.F. Briggs, R.J. Gordenker, and M.N. Gulari *University of Michigan*

EP4 BENCHTOP POLYMER MEMS AS A LOW-COST EDUCATIONAL TOOL M. Urdaneta, R. Delille, and E. Smela *University of Maryland*

EP5 EVOLUTION OF THE HILTON HEAD WORKSHOP RESEARCH COMMUNITY

A.D. Troy, G.-Q. Zhang, and M. Mehregany *Case Western Reserve University*

EP6 HANDS-ON MEMS: BUILDING COMPETENCE THROUGH PRACTICAL LEARNING EXPERIENCES

L.G. Fréchette^{1,2}, C.W. Wong², K. Chin³, K.F. Farmer⁴, G. Georgiou³, F. Miller⁵, and V. Modi²

¹Université de Sherbrooke, CANADA, ²Columbia University,

³New Jersey Institute of Technology, ⁴TSI Incorporated, and ⁵Lehigh University

EP7 INTRODUCTORY MICROMACHINING AND MEMS COURSE FOR GRADUATE AND UNDERGRADUATE STUDENTS

J.W. Judy¹ and P.S. Motta²

¹University of California at Los Angeles and ²Innovative Micro Technology

EP8 MEMS CURRICULUM AT AUBURN UNIVERSITY'S MICROELECTRONICS CENTER

R. Ramadoss

Auburn University

EP9 COMPREHENSIVE MEMS CURRICULUM AT UCLA

J.W. Judy, G.P. Carmen, F.M.-C. Chang, Y. Chen, H.H. Fetterman, N.N. Ghoniem, W.S. Grudfest, V. Gupta, C.-M. Ho, Y.S. Ju, W.J. Kaiser, P. Kavehbour, C.-J. Kim, R.T. M'Closky, C.D. Montemagno, L. Pilon, J.J. Schmidt, E. Yablonovitch, and X. Zhong

University of California at Los Angeles

EP10 MICRO AND NANOSCALE EDUCATION AT STANFORD UNIVERSITY A.A. Barlian, R.T. Howe, G.T.A. Kovacs, and B.L. Pruitt *Stanford University*

 $\begin{array}{ll} \textbf{EP11} & NSF/NASA-GSFC \ MEMS \ EDUCATION \ WORKSHOP \ OUTCOMES \\ & B.L. \ Pruitt^1, \ M.T.A. \ Saif^2, \ R. \ Ghodssi^3, \ K.L. \ Turner^4, \ J.W. \ Judy^5, \\ & and \ M.A. \ Schmidt^6 \end{array}$

¹Stanford University, ²University of Illinois at Urbana-Champagne, ³University of Maryland, ⁴University of California at Santa Barbara, ⁵University of California at Los Angeles, and

⁶Massachusetts Institute of Technology

EP12 SELF-ASSEMBLY OF A BIOMEMS SYLLABUS: TEACHING BIOMEMS THROUGH THE DEVELOPING ORGANISM M.M. Maharbiz

University of Michigan

EP13 THE 18mm² CLASSROOM T. Dallas, R. Gale, and J. Berg Texas Tech University

EP14 WHAT SHOULD A FIRST COLLEGE COURSE ON MEMS BE?
K. Najafi and M. Maharbiz
University of Michigan

Open Posters

CHEMICAL

OP1 CHITOSAN FOR BIOFUNCTIONALIZATION OF MEMS S.T. Koev, V. Badilita, M.A. Powers, H. Yi, W.E. Bentley, G.F. Payne, G.W. Rubloff, and R. Ghodssi *University of Maryland*

OP2 DESIGN AND CHARACTERIZATION OF A POLYMER-BASED MICROFLUIDIC SYSTEM FOR ELECTROPHYSIOLOGICAL STUDIES E.D. Moss, N. Reddy, and A.B. Frazier Georgia Institute of Technology

OP3 FORCE-SENSING PILLARS FOR THE STUDY OF LOCOMOTION IN THE NEMATODE C. ELEGANS S.M. Coulthard¹, S.-J. Park¹, S. Lockery², M.B. Goodman¹, and B.L. Pruitt¹

Stanford University and ²University of Oregon

OP4 INP OPTICAL MEMS FOR INTEGRATED SENSING AND PHOTONICS APPLICATIONS

N. Siwak, J. McGee, and R. Ghodssi

University of Maryland

OP5 INTEGRATED SYSTEM TO ANALYZE THE GENTIC EFFECTS OF THE SPACE ENVIRONMENT ON LIVING CELLS IN CULTURE: GENESAT A.J. Ricco¹, E. Agasid², V. Barker², T. Fahlen², M. Henschke², J.W. Hines², L. Levine³, R. Mancinelli², D. Oswell¹, R. Ricks², K. Ronzano², D. Squires², C. Storment¹, G. Swaiss², L. Timucin², J. Tucker², U. Udoh², and B. Yost² IStanford University, NASA Ames Research Center, and ALine, Inc.

- OP6 OPTICAL CARBON MONOXIDE SENSING WITH NANO-COMPOSITE THIN FILMS OF NiO/Au IN SiO₂
 M.L. Post¹, A. Martucci², D. Buso², and M. Guglielmi²

 **National Research Council of Canada and **University of Padova, ITALY
- OP7 ORIENTED AND VECTORIAL PATTERNING OF CARDIOMYOCYTES USING A MICROFLUIDIC DIELECTROPHORESIS CHIP TOWARDS ENGINEERED CARDIAC TISSUE WITH CONTROLLED MACROSCOPIC ANISOTROPY
 M. Yang and X. Zhang
 Boston University
- OP8 A MICROFLUIDIC BASED HIGH THROUGHPUT RESISTIVE-PULSE SENSOR FOR BIOPARTICLE DETECTION AND COUNTING J. Zhe, A. Jagtiani, and J. Hu University of Akron

EDUCATION

OP9 A NANOGRAM MICROROBOT DEMONSTRATION COMPETITION FOR ROBOCUPSOCCER
C. McGray¹, F. Arai², A. Jacoff¹, S. Tadokoro², and M. Gaitan¹

National Institute of Standards and Technology and ²Tohoku University, JAPAN

PHYSICAL

- OP10 A SILICON-ON-INSULATOR INERTIAL MEMS MULTISENSOR M. Kranz¹, J. McKee¹, M. Whitley¹, T. Hudson², and S. Holt²

 Image: Morgan, A Stanley Company and U.S. Army AMRDEC
- OP11 MODELING OF CMOS COMPATIBLE MEMS ACTUATORS FOR WIRELESS COMMUNICATIONS
 R.Kotha and A.A. Ayon
 University of Texas
- OP12 TEMPERATURE-STABILIZED MICROMECHANICAL RESONATORS M.A. Hopcroft¹, B. Kim¹, S.A. Chandorkar¹, M. Agarwal¹, R. Melamud¹, C.M. Jha¹, R.N. Candler², G. Yama², and T.W. Kenny¹

 Stanford University and **Robert Bosch Corporation
- OP13 THE PHAZIR™: A PORTABLE MEMS-BASED NEAR-INFRARED SPECTROMETER
 S.D. Senturia, M. Butler, E. Deutsch, D. Day, M. Smith, A. McAllister, K. Zafiriou, K. Bober, J. Booth, E. Jahn, and F. Haibach Polychromix, Inc.

TECHNICAL

- OP14 APPLICATION OF A MODIFIED QUALITY FUNCTION DEPLOYMENT METHOD FOR MEMS
 T. Lamers, R. Flynn, P. Chiang, Y.R. Rau, B. Pruitt, and K. Ishii Stanford University
- OP15 FULLY DRY MICROASSEMBLY AND PARALLEL PART TRANSFER USING ADHESION FORCE AT THE SOLID/SOLID INTERFACE K. Wang¹, R. Baskaran², and K.F. Böhringer¹

 Inviversity of Washington and **Intel

OP16	IN-PLANE STRAIN DETERMINATION IN NANOSCALE CANTILEVERS
	USING SCANNING MOIRÉ INTERFEROMETRY
	Y. Zhao and X. Zhang

Boston University

OP17 LENGTH-SCALE EFFECT ON NANOINDENTATION CREEP IN PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITED SILICON OXIDE FILMS Z. Cao and X. Zhang Boston University

OP18 LEVERAGING STANDARD IC PACKAGING FOR MEMS OSCILLATORS P. Gupta, E. Radza, W. Chen, R. Sheridan, R. Sheridan, R. Melamud, M. Lutz, A. Partridge, and K. Petersen SiTime Corporation

PARAMETERIZED METHOD FOR MEMS GEAR DESIGN **OP19** E.S. Kolesar and C.A. Edwards Texas Christian University

OP20 SIMULTANEOUS MEASUREMENT OF TEMPERATURE AND STRESS IN MEMS DEVICES USING RAMAN SPECTROSCOPY T. Beechem and S. Graham

Georgia Institute of Technology

SMART CERAMIC PACKAGING OP21 C. Sippola and C. Ahn

University of Cincinnati

OP22 THEORY AND EXPERIMENTS FOR GRADIENT RESIDUAL STRESS IN MEMS-BASED INFRARED DETECTOR STRUCTURES S. Huang and X. Zhang Boston University

THERMALLY DRIVEN MICRO/NANO GAS FLOWS: NUMERICAL **OP23** TECHNIQUES AND PHYSICAL PHENOMENA N. Masters and W. Ye Georgia Institute of Technology

Hilton Head 2006